Product Description

Uniform Section Linings are similar to traditional concrete slope paving. They create a solid, high quality concrete lining with a relatively low hydraulic resistance and a uniform cross section. These linings are used to reduce the infiltration or exfiltration of aggressive waste and chemical fluids into or out of open channels and basins. They are also used to reduce exfiltration in arid regions where open channels and basins require watertight linings.

Uniform Section Linings are resistant to leachate and most chemicals. They protect geosynthetic liners from mechanical damage, exposure to UV light, and freeze-thaw cycles. These self-supporting, high strength, linings permit construction on steep side slopes and replace the conventional use of clay or sand as liner protection. Concrete filling of the forms can be performed with a minimum of traffic on the liner, and the tensile strength and abrasion resistance of the fabric protect the liner from the pumped concrete.

Uniform Section forms are woven from multifilament and textured yarns. The double-layer fabric is joined at closely spaced centers by interwoven drop cords to form a lining of the specified thickness and weight.

1.0 GENERAL

1.1 Scope of Work: The Contractor shall furnish all labor, materials, equipment, and incidentals required to perform all operations in connection with the installation of the proposed Uniform Section (US) Lining in accordance with the lines, grades, design, and dimensions shown on the Contract Drawings and as specified herein.

1.2 Description: The work shall consist of installing an unreinforced concrete lining by positioning specially woven, double-layer synthetic forms on the surface to be protected and filling them with a pumpable, fine aggregate concrete (structural grout) in such a way as to form a stable lining of required thickness, weight and configuration.

2.0 MATERIALS REQUIREMENTS

2.1 Fine Aggregate Concrete: Fine aggregate concrete shall consist of a proportioned mixture of Portland cement, fine aggregate (sand) and water. The consistency of the fine aggregate concrete delivered to the concrete pump shall be proportioned and mixed as to have an efflux time of 9-12 seconds when passed through the 0.75 inch (19 mm) orifice of the standard flow cone that is described in ASTM C 939. Pozzolan, fluidifier or pumping aid conforming to this Specification may be used at the option of the Contractor. The mix shall exhibit a compressive strength of 2,000 lb/in² (13.8 MPa) at 28 days, when made and tested in accordance with ASTM C 31 and C 39.

2.1.1 Portland cement shall conform to ASTM C 150, Type I or Type II.

2.1.2 Fine aggregate shall conform to ASTM C 33, except as to grading. Aggregate grading shall be reasonably consistent and shall not exceed the maximum size which can be conveniently handled with available pumping equipment.
2.1.3 Water for mixing shall be clean and free from injurious amounts of oil, acid, salt, alkali, organic matter or other deleterious substances.

2.1.4 Pozzolan, if used, shall conform to ASTM C 618, Class C, F or N.

2.1.5 Plasticizing and air entraining admixtures, if used, shall conform to ASTM C 494 and ASTM C 260, respectively.

2.2 Fabric Forms:

The fabric forms shall be as specified, HYDROTEx™ Uniform Section (see Note A) forms as manufactured by Geostar Corporation; 74 Perimeter Center East, Suite 7420; Atlanta, Georgia 30346-1803, Tel: 800.253.0561 (770.399.5051); or approved equal. The fabric forms shall be composed of synthetic yarns formed into a woven fabric. Yarns used in the manufacture of the fabric shall be composed of nylon and/or polyester. Forms shall be woven with a minimum of 50% textured yarns (by weight) to improve adhesion to fine aggregate concrete and to improve filtration. Partially-oriented (POY), draw-textured, and/or staple yarns shall not be used in the manufacture of the fabric. Each layer of fabric shall conform to the physical, mechanical and hydraulic requirements referenced herein. The fabric forms shall be free of defects or flaws which significantly affect their physical, mechanical, or hydraulic properties.

Note A: The engineer shall indicate the Uniform Section Lining size required (see Table 1.0). Example: US400.

2.2.1 Fabric forms shall consist of double-layer woven fabric joined together by spaced, interwoven cords of uniform length to form a concrete lining with a finished average thickness of (see Table 1.0) inches (mm) and a nominal mass per unit area of (see Table 1.0) lb/ft² (kg/m²). The cords shall be interwoven in pairs and each cord shall have a minimum breaking strength of 160 lbf (710 N) when tested in accordance with ASTM D 2256. After the form has been filled with fine aggregate concrete, the cords’ drop points shall be on approximately ____ inch (mm) x ____ inch (mm) (see Table 1.0) spacings. The cords shall connect the two layers of fabric to form a comparatively uniform surface appearance.

2.2.2 Mill widths of fabric shall be a minimum of 76 inches (1.92 m). Each selvage edge of the top and bottom layers of fabric shall be reinforced for a width of not less than 1.35 inches (35 mm) by adding a minimum of 6 warp yarns to each selvage construction. Mill width rolls shall be cut to the length required, and the double-layer fabric separately joined, bottom layer to bottom layer and top layer to top layer, by means of sewing thread, to form multiple mill width panels with sewn seams on not less than 72 inch (182 cm) centers.

2.2.3 All factory-sewn seams shall be downward facing as shown on the Contract Drawings. All seams sewn in the factory shall be not less than 90 lbf/in (15.7 kN/m) when tested in accordance with ASTM D 4884. All sewn seams and zipper attachments shall be made using a double line of U.S. Federal Standard Type 401 stitch. All stitches shall be sewn simultaneously and be parallel to each other, spaced between 0.25 inches (6 mm) to 0.75 inches (19 mm) apart. Each row of stitching shall consist of 4 to 7 stitches per inch (per 25.4 mm). Thread used for seaming shall be nylon and/or polyester.

2.2.4 Baffles shall be installed at predetermined mill width intervals to regulate the distance of lateral flow of fine aggregate concrete. The baffle material shall be non-woven filter fabric. The grab tensile strength of the
filter fabric shall be not less than 90 lbf (400 N) when tested in accordance with ASTM D 4632.

2.2.5 Whenever plastic weep tubes for the relief of hydrostatic uplift pressure are required, they shall be inserted through the fabric forms at locations specified in the Contract Drawings. The lower ends of the weep tubes shall be securely covered by filter fabric, or the fabric forms shall be placed over filter fabric as specified elsewhere in this Specification.

2.2.6 The fabric forms shall be kept dry and wrapped such that they are protected from the elements during shipping and storage. If stored outdoors, they shall be elevated and protected with a waterproof cover that is opaque to ultraviolet light. The fabric forms shall be labeled as per ASTM D 4873, “Guide for Identification, Storage and Handling of Geosynthetic Rolls.”

2.2.7 The Contractor shall submit a manufacturer’s certificate that the supplied fabric forms meet the criteria of these Specifications, as measured in full accordance with the test methods and standards referenced herein. The certificates shall include the following information about each fabric form delivered:

- Manufacturer’s name and current address;
- Full product name;
- Style and product code number;
- Form number(s);
- Composition of yarns; and
- Manufacturer’s certification statement.

2.3 Filter Fabrics: The filter fabrics shall be composed of synthetic fibers or yarns formed into a nonwoven or woven fabric. Fibers and yarns used in the manufacture of filter fabrics shall be composed of at least 85% by weight of polypropylene, polyester or polyethylene. They shall be formed into a network such that the filaments or yarns retain dimensional stability relative to each other, including selvages. These materials shall conform to the physical requirements shown below. The filter fabric shall be free of defects or flaws which significantly affect its mechanical or hydraulic properties.

PROPERTY REQUIREMENTS - FILTER FABRIC

<table>
<thead>
<tr>
<th>Property</th>
<th>Test Method</th>
<th>Units</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grab Tensile Strength</td>
<td>ASTM D 4632</td>
<td>lbf (N)</td>
<td>90 (400)</td>
</tr>
<tr>
<td>Elongation at Break</td>
<td>ASTM D 4632</td>
<td>%</td>
<td>15</td>
</tr>
<tr>
<td>Trapezoidal Tear Strength</td>
<td>ASTM D 4533</td>
<td>lbf (N)</td>
<td>30 (130)</td>
</tr>
<tr>
<td>Permittivity</td>
<td>ASTM D 4491</td>
<td>sec⁻¹</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Notes:

1. Conformance of filter fabrics to specification property requirements shall be based on ASTM D 4759, “Practice for Determining the Specification Conformance of Geotextiles.”

2. All numerical values represent minimum average roll values (i.e., average of test results from any sample roll in a lot shall meet or exceed the minimum values). Lots shall be sampled according to ASTM D 4354, “Practice for Sampling of Geosynthetics for Testing.”

3.0 DESIGN REQUIREMENTS

Note B: Select the appropriate pair of paragraphs for the final specification based upon the type of hydraulic application.

The average thickness, mass per unit area and hydraulic resistance of each concrete lining shall withstand the hydraulic loadings (velocity, depth, duration, shear stress, pressure, and frequency of immersion) for the design discharges along the structure(s). The stability analysis for each concrete lining shall be accomplished using a factor-of-safety methodology. A minimum factor of safety of 1.5 shall be required.

The Contractor shall provide to the Engineer calculations and design details, provided by the manufacturer or a professional engineer, attesting to the suitability of each fabric formed concrete lining for the purpose contemplated. Each concrete lining shall be accepted only when accompanied by the documented hydraulic performance characteristics derived from tests performed under controlled flow conditions. Test conditions shall conform to test protocol as documented in “Hydraulic Stability of Fabric Formed Concrete Lining and Mat Systems During Overtopping Flow.”

or

The average thickness, mass per unit area and hydraulic resistance of each concrete lining shall withstand the hydraulic loadings (depth, duration, type of wave, wave height and period, and pressure distribution) for the design wave. The stability analysis for the concrete lining shall be accomplished using the factor-of-safety methodology. A minimum factor of safety of 1.5 shall be required.

The Contractor shall provide to the Engineer calculations and design details, provided by the manufacturer or a professional engineer, attesting to the suitability of each fabric formed concrete lining for the purpose contemplated. Each concrete lining shall be accepted only when accompanied by hydraulic stability calculations derived from mathematical models developed specifically for fabric formed concrete linings and for this purpose.

4.0 CONSTRUCTION AND INSTALLATION REQUIREMENTS

4.1 Site Preparation

4.1.1 Areas on which fabric forms are to be placed shall be constructed to the lines, grades, contours, and dimensions shown on the Contract Drawings. All obstructions such as roots and projecting stones shall be removed. Where such areas are below the allowable grades, they shall be brought to grade by placing compacted layers of select material. The thickness of layers and the amount of compaction shall be as specified by the Engineer. Where required by the Contract Specifications, soft and otherwise unsuitable subgrade soils shall be identified, excavated and replaced with select materials in accordance with the Contract Specifications.

4.1.2 Excavation and preparation of aprons as well as anchor, terminal or toe trenches shall be done in accordance with the lines, grades, contours, and dimensions shown on the Contract Drawings.

4.1.3 Immediately prior to placing the fabric forms, the prepared area shall be inspected by the Engineer,
and no forms shall be placed thereon until the area has been approved.

4.2 Fabric Form Placement

4.2.1 Whenever specified, a filter fabric shall be placed on the graded surface or ends of weep tubes approved by the Engineer. If a filter fabric is not required, fabric forms shall be placed directly on the prepared subgrade.

4.2.2 Fabric forms shall be placed within the limits shown on the Contract Drawings. Anchoring of the fabric forms shall be accomplished through the use of anchor, terminal and toe trenches.

4.2.3 Adjacent fabric forms shall be joined before filling with fine aggregate concrete by field sewing or zipper the two bottom layers of fabric together and the two top layers of fabric together. All field seams shall be made using two lines of U.S. Federal Standard Type 101 stitches. All sewn seams shall be downward facing, and all zipper seams shall be fastened as shown on the Contract Drawings, except with the approval of the Engineer.

4.2.4 When conventional joining of fabric forms is impractical or where called for in the Contract Drawings, adjacent forms may be overlapped a minimum of 3 feet (1 m) to form a lap joint, pending approval by the Engineer. Based on the predominant flow direction, the downstream edge of the form shall overlap the upstream edge of the next form. In no case shall simple butt joints between forms be permitted.

4.2.5 Expansion joints shall be provided as shown on the Contract Drawings, or as specified by the Engineer.

4.2.6 Immediately prior to filling with fine aggregate concrete, the assembled fabric forms shall be inspected by the Engineer, and no fine aggregate concrete shall be pumped therein until the fabric form placement has been approved. At no time shall the fabric forms be exposed to ultraviolet light (including direct sunlight) for a period exceeding five days.

4.3 Fine Aggregate Concrete Placement

4.3.1 Following the placement of the fabric forms, small slits shall be cut in the top layer of the fabric form to allow the insertion of the filling pipe at the end of the fine aggregate concrete pump hose. These slits shall be of the minimum length to allow proper insertion of the filling pipe. Fine aggregate concrete shall be pumped between the top and bottom layers of fabric, filling the forms to the recommended thickness and configuration.

4.3.2 Fine aggregate concrete shall be pumped in such a way that excessive pressure on the fabric forms and cold joints are avoided. A cold joint is defined as one in which the pumping of the fine aggregate concrete into a given form is discontinued or interrupted for an interval of forty-five or more minutes.

4.3.3 Holes in the fabric forms left by the removal of the filling pipe shall be temporarily closed by inserting a piece of nonwoven fabric or similar material. The nonwoven fabric shall be removed when the concrete is no longer fluid and the concrete surface at the hole shall be cleaned and smoothed by hand. Foot traffic on the filled form shall be restricted to an absolute minimum for one hour after filling.

4.3.4 After the fine aggregate concrete has set, all anchor, terminal and toe trenches shall be backfilled and compacted, as specified by the Engineer.

4.3.5 The Uniform Section Lining shall be measured by the number of square feet (square meters) computed from the payment lines shown on the Contract Drawings or from payment lines established in writing by the Engineer. This includes Uniform Section fabric forms, fine aggregate concrete, and filter fabric used in the aprons, overlaps, and anchor, terminal, or toe trenches. Slope preparation, excavation and backfilling, and bedding are separate pay items.